Constructions for Steiner quadruple systems with a spanning block design

نویسندگان

  • Lijun Ji
  • Lie Zhu
چکیده

A singular direct product construction is presented for Steiner quadruple systems with a spanning block design. More constructions are also provided using Steiner systems S(3; k; v) and other designs. Small orders for v = 40 and 52 are constructed directly. Some in1nite classes of orders are also obtained. c © 2002 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Product constructions for cyclic block designs II. Steiner 2-designs

In [4] we introduced a product construction for cyclic Steiner quadruple systems. The purpose of this paper is to modify the construction so that it is applicable to cyclic Steiner 2-designs. A cyclic Steiner 2-design is a Steiner system s(t, k, u), 2 d t < k < u, in which t = 2 and which has an automorphism of order u. We denote such a system by CS(2, k, u). Under suitable conditions we show h...

متن کامل

Constructions for generalized Steiner systems GS (3, 4, v , 2)

Generalized Steiner systems GS (3, 4, v, 2) were first discussed by Etzion and used to construct optimal constant weight codes over an alphabet of size three with minimum Hamming distance three, in which each codeword has length v and weight four. Not much is known for GS (3, 4, v, 2)s except for a recursive construction and two small designs for v = 8, 10 given by Etzion. In this paper, more s...

متن کامل

Combinatorial Constructions of Optimal (m, n, 4, 2) Optical Orthogonal Signature Pattern Codes

Optical orthogonal signature pattern codes (OOSPCs) play an important role in a novel type of optical code-division multiple-access (CDMA) network for 2-dimensional image transmission. There is a one-to-one correspondence between an (m,n,w, λ)-OOSPC and a (λ+ 1)-(mn,w, 1) packing design admitting an automorphism group isomorphic to Zm × Zn. In 2010, Sawa gave the first infinite class of (m,n, 4...

متن کامل

The existence of resolvable Steiner quadruple systems

A Steiner quadruple system of order v is a set X of cardinality v, and a set Q, of 4-subsets of X, called blocks, with the property that every 3-subset of X is contained in a unique block. A Steiner quadruple system is resolvable if Q can be partitioned into parallel classes (partitions of X). A necessary condition for the existence of a resolvable Steiner quadruple system is that v = 4 or 8 (m...

متن کامل

Strict colorings of Steiner triple and quadruple systems: a survey

The paper surveys problems, results and methods concerning the coloring of Steiner Triple and Quadruple Systems viewed as mixed hypergraphs. In this setting, two types of conditions are considered: each block of the Steiner system in question has to contain (i) a monochromatic pair of vertices, or, more restrictively, (ii) a triple of vertices that meets precisely two color classes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 261  شماره 

صفحات  -

تاریخ انتشار 2003